Оглавление

Исходные данные для проектирования	3
Оценка инженерно-геологических условий площадки строительства.	4
Расчет центрально нагруженного сжатого сборного ленточного фундамента	5
Определение нагрузок, действующих на основание	5
Нагрузки на фундамент от наружных стен	5
Нагрузки на фундамент от внутренних несущих стен	7
Определение глубины заложения фундамента	8
Определение ширины подошвы фундамента (без учета подвала)	9
Определение размеров подошвы фундамента под наружные стены	9
Определение размеров подошвы фундамента внутренних несущих стен	10
Определение ширины подошвы фундамента (с учетом подвала)	11
Определение размеров подошвы фундамента под наружные стены	11
Определение размеров подошвы фундамента внутренних несущих стен	13
Компоновка фундамента	14
Устройство гидроизоляции	15
Расчет внецентренно нагруженного сжатого ленточного фундамента	15
Расчет осадки ленточного сборного фундамента.	17
Расчет фундамента из призматических железобетонных свай с монолитным ростверком	21
Расчет свайного фундамента под наружные стены	21
Расчет свайного фундамента под внутренние несущие стены	24
Расчет осадок свайных фундаментов	27
Технико-экономическое сравнение ленточного и свайного фундамента	30
Заключение	32
Библиографический список	33

Исходные данные для проектирования.

Данным проектом предусматривается проектирование фундаментов для 9-этажного жилого здания: сборного ленточного фундамента и свайного с монолитным заглубленным ростверком.

Проектом предусмотрено строительство в следующих условиях:

Район строительства – г. Сыктывкар.

Уровень грунтовых вод на глубине 2,0 м от поверхности грунта.

Среднесуточная температура в помещении более 20°C.

Класс сооружения – II.

Степень долговечности и огнестойкости – II.

Характеристика здания: 9-этажный кирпичный жилой дом прямоугольной конфигурации. Длина здания $L=23,35\,\mathrm{m}$, ширина $B=18\,\mathrm{m}$, высота $H=27,7\,\mathrm{m}$, высота этажа $h=3.0\,\mathrm{m}$, высота подвала $h_{\mathrm{пол}}=2,5\,\mathrm{m}$.

Пространственная жесткость здания обеспечивается совместной работой внутренних несущих кирпичных стен и жестким диском перекрытия и покрытия.

Стены выполнены из кирпичной кладки удельным весом $\gamma=18~{\rm кH/m^3}$, толщина наружных стен 64 см, внутренних — 38 см. Междуэтажные перекрытия из крупноразмерного железобетонного настила. Вес $1{\rm m^2}$ настила 2,8 кН. Пол из линолеума. Межкомнатные перегородки выполнены из гипсобетонных панелей толщиной 8 см, межквартирные — из двух панелей толщиной по 8 см каждая с воздушной прослойкой 4 см. Кровля плоская, вентилируемая и совмещенная. Карниз сборный железобетонный, вес $1{\rm m}-2$,8 кН. Утеплитель — керамзит с удельным весом $\gamma=6~{\rm kH/m^3}$. Под зданием рассоложен подвал ($H_{\rm pa6}=2$,5 м) для прокладки инженерных сетей и подсобных помещений. Пол подвала бетонный, толщиной $h_{ef}=0$,1 м, плотностью $\rho=2200~{\rm kr/m^3}$. Нагрузка от перекрытия над подвалом $P_1=50~{\rm kH}$ при эксцентриситете $e_1=15~{\rm cm}$.

Оценка инженерно-геологических условий площадки строительства.

Площадка строительства находится в городе Сыктывкар. Рельеф спокойный, основание однородное. Инженерно-геологические условия площадки строительства выявлены посредством бурения 5 скважин на глубину 14-15 м.

Грунт основания: песок среднезернистый маловлажный плотный. Уровень грунтовых вод на глубине 2,0 м от поверхности грунта.

Площадка пригодна для возведения здания, грунт песок среднезернистый маловлажный плотный может служить естественным основанием.

Физико-механические характеристики грунта: $\phi = 25^{\circ}$, $\gamma = 1750$ кг/м³, e = 0.50.

Расчет центрально нагруженного сжатого сборного ленточного фундамента.

Определение нагрузок, действующих на основание.

Нагрузки на фундамент от наружных стен.

Определяем нагрузки на наружную стену в осях А-2. Находим грузовую площадь:

$$A_{\text{rp1}} = 3.27 * 4.4 = 14.38 \text{ m}^2$$

здесь 3,27 м – расстояние между осями оконных проемов; 4,4 м – половина расстояния в чистоте между несущими стенами.

Возможность неодновременного загружения всех 9 этажей временной нагрузкой учитываем, вводя понижающий коэффициент:

$$A/A1 = 14,38/9 = 1,6$$

$$\psi_{n1} = 0.4 + \frac{0.6}{\sqrt{9 * 1.6}} = 0.56$$

Находим нормативную и расчетную нагрузки на уровне спланированной отметки земли на 3,27 м длины фундамента под наружную стену здания.

Агр2 Таблица 1

	Нормативн	ная нагрузка	Коэффициент	Расчетная нагрузка, кН	
Нагрузки	На единицу площади, кН/м ²	От грузовой площади, кН	надежности по нагрузке, γ_f		
	П	остоянные наг	рузки		
Защитный слой гравия, втопленного в битумную мастику	0,3	4,31	1,3	5,6	
3-слойный гидроизоляционный ковер	0,15	2,16	1,3	2,81	
Утеплитель (керамзит)	2	28,76	1,3	37,39	
Пароизоляция	0,06	0,86	1,3	1,12	
Железобетонный карниз	_	14,38	1,1	15,82	
Плиты	2,8	402,64	1,1	444,9	

междуэтажных						
перекрытий						
Перегородки из						
гипсобетонных	1,5	194,13	1,3	252,37		
панелей на 9 эт.	·	•	·	ŕ		
Пол и линолеум на	0,2	25,88	1,1	28,47		
9 этажах	0,2	25,66	1,1	20,47		
От стен 9 эт. за	949,29 - 300					
вычетом оконных	= 649,3	649,3	1,1	714,23		
проемов	- 049,3					
От кирпичной		18,84	1,1	20,72		
кладки до карниза	_	10,04	1,1	20,72		
Вес цокольной		37,67	1,1	41,44		
части стены	_	37,07	1,1	71,77		
ИТОГО:	_	1378,93	_	1562,87		
Временные нагрузки						
От снега:						
Кратковременная	2	28,76	1,4	40,26		
Длит. действующая	1	14,38	1,4	20,13		
На перекрытия с						
учетом ψ_n						
Кратковременная	1,5	108,7	1,3	141,31		
Длит. действующая	0,3	21,74	1,3	28,26		
ИТОГО:	_	173,58	_	229,96		

Нормативная нагрузка на 1 м стены:

Постоянная:
$$N = \frac{1378,93}{3,27} = 421,7$$
 кН

Временная длительно действующая:
$$N = \frac{14,38+28,74}{3,27} = 11,05$$
 кН

Временная кратковременная:
$$N = \frac{28,76+108,7}{3,27} = 42,04$$
 кН

Суммарная нагрузка, с учетом коэффициентов надежности и сочетаний:

$$N = 0.95 * (421.7 + 0.95 * 11.05 + 0.95 * 42.04) = 448.53 \text{ kH}$$

Расчетная нагрузка на 1 м стены:

Постоянная:
$$N = \frac{1562,87}{3.27} = 477,94$$
 кН

Временная длительно действующая:
$$N = \frac{20,13+28,26}{3,27} = 14,8$$
 кН

Временная кратковременная:
$$N = \frac{40,26+141,31}{3,27} = 55,53$$
 кН

Суммарная нагрузка, с учетом коэффициентов надежности и сочетаний:

$$N = 0.95 * (477,94 + 0.95 * 14,8 + 0.9 * 55,53) = 517,52 \text{ kH}$$

Нагрузки на фундамент от внутренних несущих стен.

Определяем нагрузки на внутреннюю несущую стену. Находим грузовую площадь:

$$A_{\rm rp} = 1.0 * 8.8 = 8.8 \text{ m}^2$$

$$\psi_{n2}=0.4+\frac{0.6}{\sqrt{9*1}}=0.6$$

Находим нормативную и расчетную нагрузки на уровне спланированной отметки земли:

Таблица 2

	Нормативная нагрузка		Коэффициент	Do ovrogras g				
Нагрузки	На единицу площади, кН/м ²	От грузовой площади, кН нагрузке, γ_f		Расчетная нагрузка, кН				
Постоянные нагрузки								
Защитный слой								
гравия, втопленного	0,3	2,64	1,3	3,43				
в битумную мастику								
3-слойный								
гидроизоляционный	0,15	1,32	1,3	1,72				
ковер								
Утеплитель	2	17,6	1,3	22,88				
(керамзит)		·	·	•				
Пароизоляция	0,06	0,53	1,3	0,69				
Плиты								
междуэтажных	2,8	246,4	1,1	271,04				
перекрытий								
Перегородки из	1.5	110.0	1 1	15444				
гипсобетонных	1,5	118,8	1,1	154,44				
панелей на 9 эт.								
Пол и линолеум на	0,2	15,84	1,3	17,42				
9 этажах	,	,	,	,				
От стен 9 эт	172,37	172,37	1,1	189,61				
ИТОГО:	_	584,35	_	671,01				
Временные нагрузки								
От снега:	2	17.6	1.4	24.64				
Кратковременная	2	17,6	1,4	24,64				
Длит. действующая	1	8,8	1,4	12,32				
На перекрытия с								
учетом ψ_n								
Кратковременная	1,5	71,28	1,3	92,66				
Длит. действующая	0,3	14,26	1,3	18,54				

	ИТОГО:	_	111,94	_	148,16
--	--------	---	--------	---	--------

Нормативная нагрузка на 1 м стены:

Постоянная: N = 584,3 кH

Временная длительно действующая: N = 8.8 + 14.26 = 23.06 кН

Временная кратковременная: N = 17,6 + 71,28 = 88,88 кН

Суммарная нагрузка: N = 0.95 * (584,3 + 0.95 * 23,06 + 0.9 * 88,88) = 656,1 кH

Расчетная нагрузка на 1 м стены:

Постоянная: N = 671,01 кH

Временная длительно действующая: N = 12,32 + 18,54 = 30,86 кН

Временная кратковременная: N = 24,64 + 92,66 = 117,3 кН

Суммарная нагрузка, с учетом коэффициентов надежности и сочетаний:

$$N = 0.95 * (671,01 + 0.95 * 30,86 + 0.9 * 117,3) = 832,7 \text{ kH}$$

Определение глубины заложения фундамента.

По карте нормативных глубин промерзания грунтов определяем d_{fn} (г. Пермь):

$$d_{fn} = 1.9 \text{ M}$$

Определяем расчетную глубину промерзания грунтов:

$$d_f = k_h * \gamma_c * d_{fn} = 0.4 * 1.1 * 1.9 = 0.8 \mathrm{m}$$

Исходя из таблицы глубины заложения подошвы фундамента в зависимости от расчетной глубины промерзания d_f ($d_w \le d_f + 2$) принимаем глубину заложения подошвы фундамента не менее расчетной глубины промерзания грунтов $d_f = 0.8$ м.

При условии наличия подвала глубина заложения фундамента определяется из конструктивных соображений в соответствии с глубиной заложения пола в подвале.

Таким образом, глубина заложения подошвы фундамента от спланированной отметки земли d = 0.3 + 0.1 + 0.1 + (2.5 - 1.1) = 1.9 м.

где 0.3м — высота фундаментной подушки; 0.1м — высота слоя грунта между полом здания и подушкой фундамента; 0.1м — высота конструкции пола в подвале; (2.5-1.1) — разность отметок пола и планировки.

При отсутствии подвала глубина заложения:

$$d_f = k_h * \gamma_c * d_{fn} = 0.6 * 1.1 * 1.9 = 1.2 м => принимаем 1.2 м.$$

 $\Gamma_{\rm Де}\,k_h = 0.6 - {
m пр}$ и устройстве пола на лагах по грунту.

Определение ширины подошвы фундамента (без учета подвала).

Определение размеров подошвы фундамента под наружные стены.

Согласно расчетам нормативная нагрузка N = 449 кH. Согласно прил. 3, табл. 1 СНиП 2.02.01-83 принимаем предварительную величину расчетного сопротивления грунта $R_0 = 400$ кПа.

Находим ширину подошвы фундамента:

$$A = \frac{N_{OII}}{R_0 - \gamma_{mII} * d} = \frac{0,449}{0,4 - 0,02 * 1,2} = 1,19 \text{ m}^2$$

Принимаем в качестве подушки фундаментную плиту марки Φ Л14.12 со следующими характеристиками L=1,18м, B=1,4м, H=0,3м, массой m=2180 кг.

$$R = \frac{1.25 * 1.2}{1,1} [0.78 * 1 * 1.4 * 0.0175 + 4.11 * 1.2 * 0.0175 + 6.67 * 0.005] = 0.190 \text{ M}\Pi\text{a}$$

Нагрузка от 1 м фундаментной плиты:
$$N_{\phi,n} = 9.81 * \frac{2180}{2.38} = 0.009$$
 МН

По ГОСТ 13579-78 принимаем 1 фундаментный блок марки ФБС 24.6.6-т с данными L = 2.38 м, B = 0.6 м, H = 0.58 м, массой M = 1960 кг и 1 пониженный блок марки ФБС 12.6.3-т (L = 2.38 м, B = 0.6 м, H = 0.28 м, массой M = 946 кг).

$$N_{\phi.6} = 9.81 * \frac{1930}{2.38} + 9.81 * \frac{946}{2.38} = 0.011 \text{ MH}$$

Вес грунта на уступах фундамента: $N_s = 2 * 0.4 * 0.9 * 0.0175 = 0.097$ МН

Необходимо соблюдение условия: $P_{II} = \frac{N_{oII} + N_{fII} + N_{sII}}{l*b} \le R$

$$P_{II} = \frac{0,449 + 0,009 + 0,011 + 0,097}{1*1.4} = 0,404 \ \mathrm{к}\Pi\mathrm{a} < 0,190 \ \mathrm{k}\Pi\mathrm{a}$$

Условие не выполняется, поэтому следует подобрать фундаментную плиту с большими характеристиками.

Принимаем фундаментную плиту марки ФЛ28.12 с параметрами:

L = 2,38 m; B = 2,8 m; H = 0,5 m; m = 3550 kg.

$$R = \frac{1.25 * 1.2}{1.1} [0.78 * 1 * 2.8 * 0.0175 + 4.11 * 1.2 * 0.0175 + 6.67 * 0.005] = 0.215 \text{ M}\Pi\text{a}$$

Нагрузка от 1 м фундаментной плиты: $N_{\phi,n}=9,81*\frac{3550}{1,18}=0,029$ МН

По ГОСТ 13579-78 принимаем 1 фундаментный блок марки ФБС 24.6.6-т с данными L=2.38 м, B=0.6 м, H=0.58 м, массой m=1960 кг.

$$N_{\Phi.6.} = 9.81 * \frac{1960}{2.38} = 0.016 \text{ MH}$$

Вес грунта на уступах фундамента: $N_s = 2*0.7*1.1*0.0175 = 0.027$ МН

Необходимо соблюдение условия: $P_{II} = \frac{N_{oII} + N_{fII} + N_{sII}}{l*b} \le R$

$$P_{II} = \frac{0,449 + 0,029 + 0,011 + 0,027}{1*2,8} = 0,186 \ {
m к} \Pi {
m a} < 0,215 \ {
m M} \Pi {
m a} \ ({
m условие выполняется}).$$

Недогруз:
$$\Delta = \frac{0.215 - 0.186}{0.215} * 100\% = 13\% > 10\%.$$

Окончательно принимаем плиту марки ФЛ28.12, поскольку при меньшем размере имеем перегруз.

Определение размеров подошвы фундамента внутренних несущих стен. Согласно расчетам нормативная нагрузка N = 656 kH.

Принимаем в качестве подушки фундаментную плиту марки Φ Л32.12 со следующими характеристиками L=1,18м, B=3,2м, H=0,5м, массой m=4140 кг.

$$R = \frac{1.25*1.2}{1,1} [0.78*1*3.2*0.0175+4.11*1.2*0.0175+6.67*0.005] = 0.230 \text{ M}\Pi\text{a}$$

Вес 1м фундаментной плиты:
$$N_{\phi,\pi} = g * \frac{m}{l} = 9.81 * \frac{4140}{1.18} = 0.034 \text{ MH}$$

Принимаем 2 фундаментных блока марки ФБС 24.4.6-т с параметрами L = 2,38м; B = 0,4м; H = 0,58м; m = 1300 кг.

$$N_{\phi.6.} = 9.81 * \frac{1300}{2.38} = 0.016 \text{ MH}$$

Нагрузка от грунта на уступах фундамента: $N_s = 2 * 1,4 * 0,7 * 0,0175 = 0,032$ кН

$$P_{II} = \frac{0,656 + 0,034 + 0,016 + 0,032}{1*3,2} = 0,227 \; \mathrm{M\Pia} < 0,230 \; \mathrm{M\Pia} \; \mathrm{(условие выполняется)}.$$

Недогруз:
$$\Delta = \frac{0.230 - 0.227}{0.230} * 100\% = 1.3\% < 10\%.$$

Окончательно принимаем фундаментную плиту марки ФЛ32.12.

Определение ширины подошвы фундамента (с учетом подвала).

Определение размеров подошвы фундамента под наружные стены.

Согласно расчетам нормативная нагрузка $N=449~\mathrm{kH}$. Согласно прил. 3, табл. 1 СНиП 2.02.01-83 принимаем предварительную величину расчетного сопротивления грунта $R_0=400~\mathrm{k\Pi a}$.

Находим площадь подошвы фундамента:

$$A = \frac{N_{OII}}{R_0 - \gamma_{mII} * d} = \frac{449}{400 - 17 * 1.9} = 1,22 \text{ m}^2 => b = 1,4 \text{ m}$$

Принимаем в качестве подушки фундаментную плиту марки ФЛ14.24 со следующими характеристиками L=2.38м, B=1,4м, H=0.3м, массой m=2180 кг.

$$R = \frac{\gamma_{c1} * \gamma_{c2}}{k} \left[M_{\gamma} * k_z * b * \gamma_{II} + M_q * d_1 * \gamma'_{II} + \left(M_q - 1 \right) * d_b * \gamma'_{II} + M_c * c_{II} \right]$$

Согласно табл.3 СНиП 2.02.01-83: $\gamma_{c1}=1,25; \gamma_{c2}=1,2$

k = 1 (прочностные характеристики грунта определены в лаборатории); $k_z = 1$

Согласно табл.4 СНиП $M_{\nu}=$ 0,78; $M_{\sigma}=$ 4,11; $M_{c}=$ 6,67(для $\phi=25^{\circ})$

$$\gamma_{II}=\gamma_{II}'=17,5rac{\kappa \mathrm{H}}{\mathrm{m}^3}; c=5\ \mathrm{к}$$
 Па; $d_1=h_s+h_{cf}*rac{\gamma_{cf}}{\gamma_{II}'}=0.4+0.1*rac{22}{17,5}=0,526$ м

 $d_b = 1,3$ м (расстояние от уровня планировки до пола подвала).

$$R = \frac{1.25 * 1.2}{1.1} [0.78 * 1 * 1.4 * 0.0175 + 4.11 * 0.526 * 0.0175 + 3.11 * 1.3 * 0.0175 + 6.67 * 0.05]$$

= 0.220 M\Pia.

Вес 1м фундаментной плиты:
$$N_{\phi,n} = g * \frac{m}{l} = 9.81 * \frac{2180}{2.38} = 0,009 \text{ MH}$$

По ГОСТ 13579-78 принимаем 4 фундаментных блока марки ФБС 24.6.6-т с данными L=2.38 м, B=0.6 м, H=0.58 м, массой m=1960 кг.

$$N_{\phi.6.} = 3 * g * \frac{m}{l} = 4 * 9.81 * \frac{1960}{2.38} = 0.032 \text{ MH}$$

Вес грунта на уступах фундамента с одной стороны:

$$N_{sII} = 0.4 * 1.6 * 0.0175 = 0.0112 \text{ MH}$$

Необходимо соблюдение условия: $P_{II} = \frac{N_{oII} + N_{fII} + N_{sII}}{l*b} \le R$

$$P_{II} = \frac{0,449 + 0,009 + 0,032 + 0,0112}{1,4*1} = 0,350 \text{ M}\Pi\text{a} > 0,220 \text{ M}\Pi\text{a}$$

Условие не выполнено, поэтому следует подобрать фундаментную плиту с большими характеристиками.

Подбираем фундаментную плиту с большими характеристиками. Берем ФЛ24.12 с данными L=1,18 м, B=2,4м, H=0.5м, массой m=3000 кг

$$R = \frac{1.25 * 1.2}{1,1} [0.78 * 1 * 2.4 * 0.0175 + 4.11 * 0.526 * 0.0175 + 3.11 * 1.3 * 0.0175 + 6.67 * 0.05]$$
$$= 0.238 \text{ M}\Pi\text{a}.$$

Вес 1м фундаментной плиты:
$$N_{\phi,\pi} = g * \frac{m}{l} = 9.81 * \frac{3000}{1,18} = 0,025 \text{ MH}$$

Вес грунта на уступах фундамента с одной стороны:

$$N_{stt} = 0.9 * 1.4 * 0.0175 = 0.027MH$$

По ГОСТ 13579-78 принимаем 4 фундаментных блока марки ФБС 24.6.6-т с данными L=2.38м, B=0.6м, H=0.58м, массой m=1960 кг.

$$N_{\phi.6.} = 3 * g * \frac{m}{l} = 4 * 9.81 * \frac{1960}{2.38} = 0,032 \text{ MH}$$

$$P_{II} = \frac{0,449 + 0,025 + 0,032 + 0,027}{1*2,4} = 0,222$$
 МПа $< 0,238$ МПа (условие выполнено).

Определяем недогруз:
$$\Delta = \frac{0.238 - 0.222}{0.238} * 100\% = 6.7\% < 10\%$$
 (допустимо)

Принимаем окончательно фундаментную плиту ФЛ24.24 с данными

$$L=1,18$$
м, $B=2,4$ м, $H=0.5$ м, массой $m=3000$ кг.

Определение размеров подошвы фундамента внутренних несущих стен. Согласно расчетам нормативная нагрузка N = 656 kH.

Находим площадь подошвы фундамента:

$$A = \frac{N_{OII}}{R_0 - \gamma_{mII} * d} = \frac{656}{400 - 17 * 1,9} = 1,78 \text{ m}^2 => b = 2\text{m}$$

Принимаем в качестве подушки фундаментную плиту марки Φ Л20.12 со следующими характеристиками L=1,18м, B=2,0м, H=0.5м, массой m=2540 кг.

$$R = \frac{1.25 \times 1.2}{1.1} [0.78 \times 1 \times 2.0 \times 0.0175 + 4.11 \times 0.526 \times 0.0175 + 3.11 \times 1.3 \times 0.0175 + 6.67 \times 0.005] = 0.230 \text{ M}\Pi a.$$

Вес 1м фундаментной плиты:
$$N_{\phi,\pi} = g * \frac{m}{l} = 9.81 * \frac{2540}{1.18} = 0.021 \text{MH}$$

По ГОСТ 13579-78 принимаем 4 фундаментных блока марки ФБС 24.4.6-т с данными L=2.38 м, B=0.4 м, H=0.58 м, массой m=1300 кг.

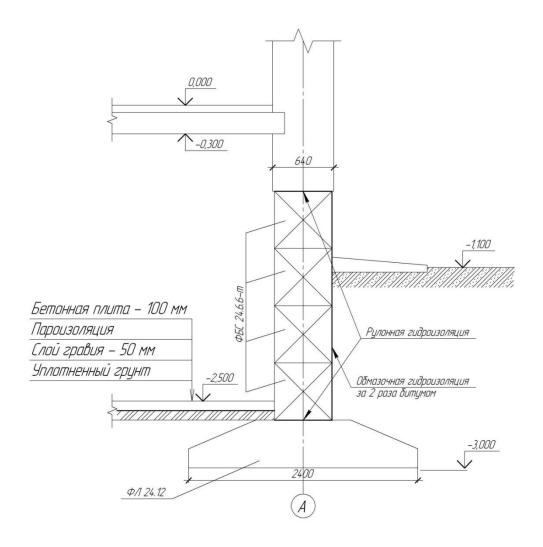
$$N_{\phi.6.} = 4 * g * \frac{m}{l} = 4 * 9.81 * \frac{1300}{2.38} = 0.021 \text{ MH}$$

$$P_{II} = \frac{0.656 + 0.021 + 0.021}{1*2.0} = 0.349 \text{ МПа} > 0.230 \text{ МПа} (условие не выполняется).$$

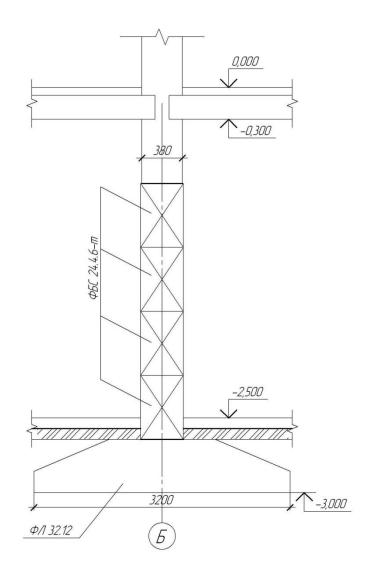
Принимаем в качестве подушки фундаментную плиту марки ФЛ32.12 со следующими характеристиками L=1,18м, B=3,2м, H=0.5м, массой m=4140 кг.

$$R = \frac{1.25 * 1.2}{1,1} [0.78 * 1 * 3.2 * 0.0175 + 4.11 * 0.526 * 0.0175 + 3.11 * 1.3 * 0.0175 + 6.67 * 0.005]$$
$$= 0.250 \text{ M}\Pi \text{a}$$

$$N_{\Phi,\pi} = g * \frac{m}{l} = 9.81 * \frac{4140}{1,18} = 0.0344 \text{ MH}$$


$$P_{II} = \frac{0.656 + 0.0344 + 0.021}{1*3.2} = 0.222 \text{ МПа} < 0.250 \text{ МПа} (условие выполняется).$$

Определяем недогруз:
$$\Delta = \frac{0,250-0,222}{0,250} * 100\% = 11,2\% > 10\%$$


Принимаем окончательно фундаментную плиту марки ФЛ32.12 со следующими характеристиками L=1,18м, B=3,2м, H=0.5м, массой m=4140 кг, поскольку при меньшем размере имеем перегруз.

Компоновка фундамента.

Принимаем для фундамента под наружные стены фундаментную плиту ФЛ24.12 с данными L=1,18м, B=2,4м, H=0.5м, массой m=3000кг, а также 4 фундаментных блока марки ФБС 24.6.6-т с данными L=2.38м, B=0.6м, H=0.58м, m=1960 кг.

Принимаем для фундамента под внутренние несущие стены фундаментную плиту марки ФЛ32.12 с параметрами: L=1,18м, B=3,2м, H=0.5м, m=4140 кг, а также 4фундаментных блока марки ФБС 24.4.6-т с данными L=2.38м, B=0.4м, H=0.58м, m=1300 кг.

Устройство гидроизоляции.

Так как уровень грунтовых вод расположен ниже отметки пола подвала, то возможно проникновение влаги по капиллярам, имеющимся в грунте, в помещение подвала. В этом случае наружную поверхность стен подвала обмазывают за 2 раза битумом или гидроизоляционной мастикой или прокладывают рулонную гидроизоляцию в стене на уровне пола в подвале и в уровне спланированной поверхности земли между стеной подвала и самого здания. Последнее выполняют для исключения проникновения сырости в помещения первого этажа за счет капиллярного переноса влаги в стенах. При сильновлажных грунтах пол подвала и внутреннюю часть стен выполняют из керамической плитки или штукатурят стены подвала цементным раствором, а пол устраивают из бетона, в который добавляют церезит, уплотняющий бетон и растворы.

Расчет внецентренно нагруженного сжатого ленточного фундамента.

Ранее были определены размеры фундаментной плиты под наружные стены. Увеличиваем площадь подошвы фундамента на 20%. b = 2.4 * 1.2 = 2.8 м

Принимаем фундаментную плиту марки ФЛ28.12 с параметрами:

$$L = 1,18 \text{ m}, B = 2,8 \text{ m}, H = 0.5 \text{ m}, m = 3550 \text{ kg}.$$

$$R = \frac{1.25 * 1.5}{1,1} [0.78 * 1 * 2.8 * 0.0175 + 4.11 * 0.526 * 0.0175 + 3.11 * 1.3 * 0.0175 + 6.67 * 0.005]$$
$$= 0.246 \text{ M}\Pi \text{a}$$

Определяем давление на подпорную стенку подвала у подошвы фундамента:

$$P_3 = (\gamma d + q) * tg^2 \left(45^\circ - \frac{\varphi}{2}\right)$$

Полезную нагрузку на прилегающей к подвалу территории заменяем эквивалентной равномерно распределенной $q=10\frac{\kappa H}{M^2}$, фиксированный слой грунта $h_c=\frac{10}{\gamma_H'}=0,54$ м.

$$L = d + h_c + n = 1,9 + 0,54 + 0,26 = 2,7 \text{ M}$$

$$P_3 = (17.5 * 1.9 + 10) * tg^2 \left(45^\circ - \frac{35^\circ}{2}\right) = 12.8 \text{ κΠa}$$

$$M_3 = P_3 * \frac{m^2 (8l^2 + 9nl + 3n^2)}{120l^2} = 5.7 \text{ kHm}$$

Определяем усилия, действующие в плоскости подошвы фундамента от его веса и веса грунта:

$$N_{\phi.n.} = 9.81 * \frac{3550}{1,18} = 0.034 \text{ MH}; N_{\phi.6.} = 4 * 9.81 * \frac{1960}{2,38} = 0.032 \text{ MH}$$

$$N_{sII} = (d - d_1) * \gamma'_{II} * 1 * \frac{b - b_c}{2} = (1.9 - 0.5) * 0.95 * 17.5 * \frac{2.8 - 0.6}{2} = 0.027 \text{ MH}$$

$$N_{II} = 0.449 + 0.034 + 0.032 + 0.027 = 0.542 \text{ MH}$$

$$x=e*N/N'; x=0,15*0,449/0,542=0,124 M$$

Вычисляем максимальное давление с учетом внецентренной нагрузки от плит перекрытий и момента от внецентренного давления грунта на обрез фундамента:

$$P_{max} = \frac{0.542}{2.8 * 1.18} \left(1 + 6 * \frac{0.124}{2.8} \right) = 0.208 \text{ M}\Pi \text{a}$$

$$P_{min} = \frac{0.542}{2.8 * 1.18} \left(1 - 6 * \frac{0.124}{2.8} \right) = 0.12 \text{ M}\Pi \text{a}$$

Проверяем выполнение условий:

$$P_{maxII} \le 1,2R$$
; 0,208 кПа $< 1,2*0,208 = 0,295$ кПа (условие выполнено).

$$P_{minII} = 0.12 > 0$$
 (условие выполняется).

Определяем недогруз по максимальному краевому давлению:

$$\Delta = (0.246 - 0.208)/0.246*100\% = 15.4\% > 10\%$$

Оставляем фундаментную подушку как для центрально сжатого фундамента Φ Л12.24 с данными L=2.38 м, B=1,2 м, H=0.3 м, массой m=1820 кг, поскольку при меньшем размере имеем перегруз.

Фундамент под внутренними несущими стенами будет работать без эксцентриситета, поэтому оставляем параметры как для центрально-сжатого фундамента.

Расчет осадки ленточного сборного фундамента.

Расчет осадки ленточного сборного фундамента проводим методом послойного суммирования.

Бытовое давление грунта на глубине заложения фундамента:

$$\sigma_{\delta z,0} = \sum_{i} \gamma_{i} \; h_{i} = 0.0175 * 1.9 = 0.032 \; \mathrm{M} \Pi \mathrm{a}$$

Вычисляем ординаты эпюры природного давления $\sigma_{\delta z}$ и вспомогательной эпюры $0.2\sigma_{\delta z}$, необходимой для определения глубины расположения нижней границы сжимаемой толщи грунта:

На поверхности земли при совпадении планировочной отметки (DL) с отметкой природного рельефа (NL): $\sigma_{zg}=0$; $0,2\sigma_{zg}=0$.

На глубине заложения фундамента:

$$\sigma_{zg} = 0.0175 * 1.9 = 0.032 \ \mathrm{M}\Pi \mathrm{a}; 0.2 \sigma_{zg} = 0.006 \ \mathrm{M}\Pi \mathrm{a}.$$

На уровне грунтовых вод: $\sigma_{zg}=0.0175*2.0=0.034~\mathrm{M}\Pi a;0.2\sigma_{zg}=0.007~\mathrm{M}\Pi a.$

Определяем ординаты эпюры дополнительных напряжений на границах элементарных слоев: $\sigma_{zv} = \alpha * P_0$

где α определяется по табл.1, прил.2 СНиП 2.02.01-83*. Чтобы избежать интерполяции задаемся соотношением $\xi=0$,4. Высота элементарного слоя грунта $h_i=0$,4 * $\frac{2.4}{2}=0$,48м.

Проверяем выполнение условия: $h_i \leq 0.4b$; $0.24 \leq 0.4*2.4 = 0.96$ м. Условие выполняется с запасом, поэтому в целях сокращения вычислений принимаем высоту элементарного слоя $h_i = 0.48$ м. Тогда принимаем $\xi = 0.8$.

Все данные заносим в таблицу 3. Вычисления продолжаются до выполнения условия $\sigma_{zp} \leq 0.2 \sigma_{zg}.$

Итоговую глубину распространения сжимающего давления на грунт основания принимаем $h_c = 8,16 \text{ м}$.

Таблица 3

z_i , M	$\xi = \frac{2z}{b}$	α	σ_{zp} , МПа	Е, кМПа
0	0	1,000	0,190	
0,48	0,4	0,977	0,186	
0,96	0,8	0,881	0,167	
1,44	1,2	0,755	0,143	
1,92	1,6	0,642	0,122	
2,4	2,0	0,550	0,105	
2,88	2,4	0,477	0,091	43
3,36	2,8	0,420	0,080	
3,84	3,2	0,374	0,071	
4,32	3,6	0,337	0,064	
4,8	4,0	0,306	0,058	
5,28	4,4	0,280	0,053	
5,76	4,8	0,258	0,049	

6,24	5,2	0,239	0,045
6,72	5,6	0,223	0,042
7,2	6,0	0,208	0,040
7,68	6,4	0,196	0,037
8,16	6,8	0,184	0,035

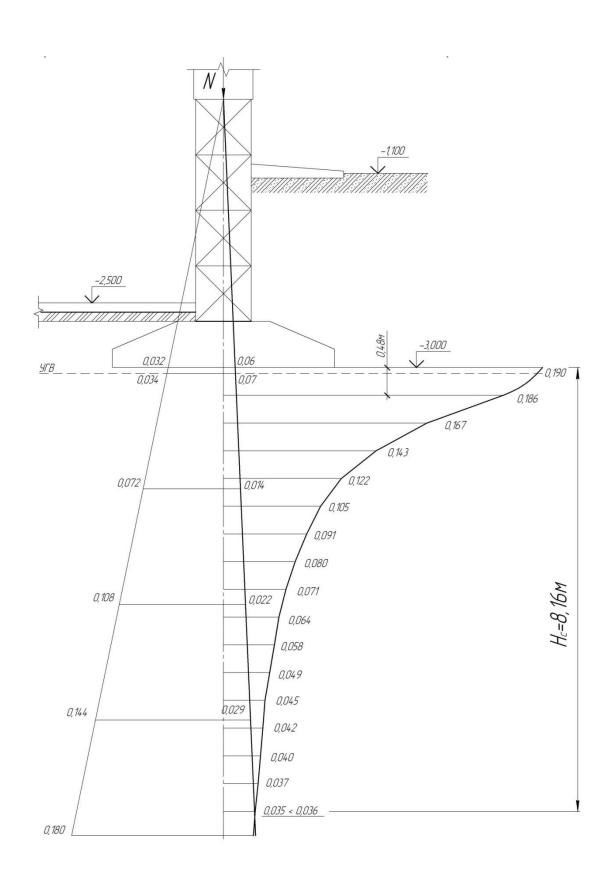
Определяем осадку фундамента по следующему уравнению:

$$s = \beta \sum_{i=1}^{n} \frac{\sigma_{zpi} h_i}{E_{oi}}$$

β – безразмерный коэффициент;

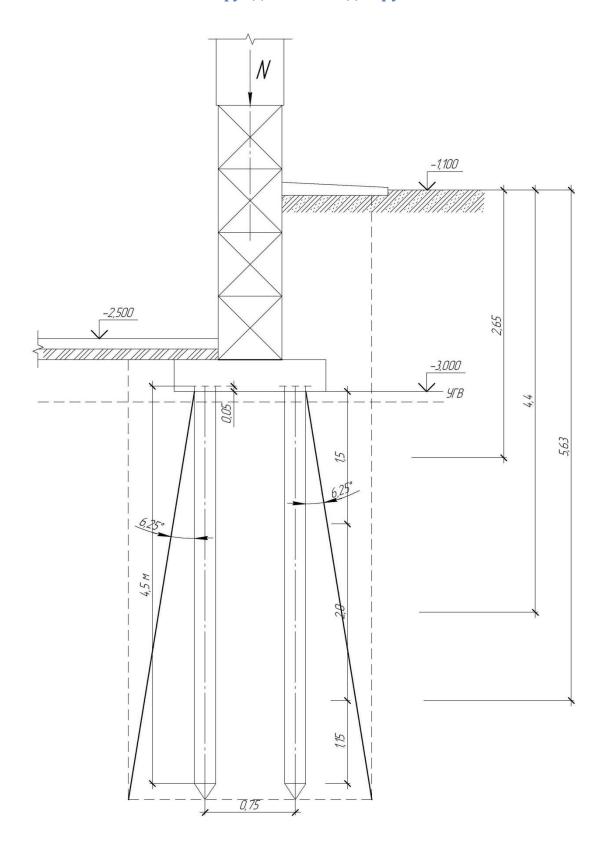
 E_{oi} — модуль общей деформации;

 h_i — высота i — го слоя грунта;


 σ_{zpi} — среднее напряжение в i — м слое.

$$\begin{split} s &= \frac{0,8*0,48}{43} * \left[\frac{0,190+0,186}{2} + \frac{0,186+0,167}{2} + \frac{0,167+0,143}{2} + \frac{0,143+0,122}{2} \right. \\ &\quad + \frac{0,122+0,105}{2} + \frac{0,105+0,091}{2} + \frac{0,091+0,080}{2} + \frac{0,080+0,071}{2} \right. \\ &\quad + \frac{0,071+0,064}{2} + \frac{0,064+0,058}{2} + \frac{0,058+0,053}{2} + \frac{0,053+0,049}{2} \\ &\quad + \frac{0,049+0,045}{2} + \frac{0,045+0,042}{2} + \frac{0,042+0,040}{2} + \frac{0,040+0,037}{2} \\ &\quad + \frac{0,037+0,035}{2} \right] = 0,013 \text{M} \end{split}$$

Предельная осадка для бескаркасного здания с несущими стенами из кирпичной кладки без армирования по табл. $S_u = 10$ см.


1,3см < 10см

Расчетное значение осадки не превышает предельно допус тимого уровня.

Расчет фундамента из призматических железобетонных свай с монолитным ростверком.

Расчет свайного фундамента под наружные стены.

Проектируем свайный фундамент из сборных железобетонных призматических свай марки C6-30 под наружные стены. По грунтовым условиям сваи висячие.

Параметры сваи: l=4,5 м, поперечное сечение 25х25 см, $l_{\rm oct}=25$ см.

Марка бетона — B25 ($R_B = 14,5$ МПа), сечение продольной арматуры:

$$4Ø12 A - I, R_{sc} = 225 МПа.$$

Разбиваем пласт грунта на однородные слои мощностью не более 2 м. Глубину заложения ростверка принимаем из тех же соображений, что и ленточный фундамент.

Допустимая нагрузка на сваю по материалу определяется по формуле:

$$F_{Rm} = \gamma_c * \varphi * (\gamma_{cb} * R_b * A_b + R_{sc} * A_s) =$$

$$1 * 1 * (1 * 14,5 * 0,0625 + 225 * 0,0025) = 0,565 MH$$

 $\gamma_{\rm c} = 1 - {
m коэффициент}$ условий работы сваи;

 ϕ — коэффициент продольного изгиба;

 $\gamma_{cb} = 1 -$ коэффициент условия работы бетона, для забивных свай.

По характеру работы сваи относятся к висячим, т.к. опираются на сжимаемый грунт.

Определим средние глубины залегания каждого из слоев:

$$h_1 = 2,65 \text{ m}; h_2 = 4,4 \text{ m}; h_3 = 5,63 \text{ m}; d = 6,6 \text{ m}.$$

Расчетное сопротивление на боковой поверхности свай f_i , а также под нижним концом сваи определяем методом линейной интерполяции по табл.1 и 2 СНиП 2.02.03-85

Тогда допустимая нагрузка на сваю по грунту определяется по формуле:

$$F_d = \gamma_c \left(\gamma_{cR} * R * A + u \sum_i \gamma_{cf} * f_i * h_i \right) =$$

$$= 1[1*2,2*0,0625+1,2*(0,0333*1,5+0,0388*2+0,0413*1,15)] = 0,348 \text{ M}\Pi a.$$

 γ_{cR} , $\gamma_{cf} = 1$ — коэффициенты условий работы грунта при забивании дизель-молотом;

R — расчетное сопротивление грунта под нижним концом сваи;

u = 1,2м — наружный периметр поперечного сечения сваи.

Несущая способность свай по материалу больше, чем по грунту, поэтому принимаем минимальное значение из двух.

Расчетное сопротивление сваи: $P_c = \frac{F_d}{\gamma_b} = \frac{0.348}{1.4} = 0.249 \text{ MH}$

 $\gamma_k = 1,4$ —коэффициент надежности, если несущая способность свай определена расчетом.

Расстояние между сваями примем a = 3b = 3 * 0,25 = 0,75 м

Требуемое число свай в фундаменте:

$$n = \frac{\gamma_k * N_I}{F_d - \gamma_f * a^2 * d * \gamma_{mI}} = \frac{1,4 * 449}{348 - 1,15 * 0,75^2 * 1,9 * 20} = 1,9 \text{ шт.} \approx 2 \text{шт.}$$

Окончательное число свай принимаем равным 2 на 1м фундамента. Принимаем двурядное расположение свай.

Определяем толщину ростверка:

$$h_p = -\frac{b}{2} + \frac{1}{2}\sqrt{b^2 + P_c/R_{bt}} = -\frac{0.25}{2} + \frac{1}{2}*\sqrt{0.25^2 + 0.249/1.05} = 0.149 \text{м} => \text{по конструкт}$$
 ивным требованиям принимаем $h_p = 0.3 \text{ м}.$

Вес ростверка на 1м фундамента: $N_p = 1.1 * 0.025 * 0.95 * 0.75 * 0.3 = 0.0059$ МН

Вес грунта на ростверке: N=0?0175*0,29*1,6=0,00812 МН

Вес 3 стеновых фундаментных блоков марки ФБС 24.6.6-т:

$$N_f = 1.1 * 4 * 1960 * \frac{9.81}{2.38} = 0.0355 \text{ MH}$$

Нагрузка на одну висячую сваю: $N_{\Phi^{\mathrm{akt}}} = \frac{N_{\mathrm{d}}}{n_{\Phi^{\mathrm{akt}}}} \leq P_{c}$

$$\frac{0,449 + 0,0059 + 0,00812 + 0,0355}{2} = 0,249 \text{ MH} < 0,250 \text{H}.$$

Определяем осредненный угол внутреннего трения грунтов, прорезываемых сваей:

$$\alpha = \frac{\varphi_{II}}{4} = \frac{25}{4} = 6,25^{\circ}$$

Найдем ширину условного фундамента:

$$B_v = 0.75 + 0.25 + 2 * 4.7 * tg6.25^\circ = 2.03 \text{ M}.$$

Найдем вес свай, используя табличные данные:

$$N_c = 2 * (4.5 * 160 * 10 + 30 * 10) = 0.03 \text{ MH}$$

Вес грунта в объеме АБВГ:

$$N_s = 0.152 \text{ MH}$$

Вес ростверка от действия нормативных нагрузок:

$$N_v = 0.025 * 0.3 * 1.17 * 0.75 = 0.0066 MH$$

Вес 3 стеновых фундаментных блоков:
$$N_{\phi,\delta} = 4 * 1960 * \frac{9,81}{2.38} = 0,0323 \text{ MH}$$

Давление под подошвой условного фундамента:

$$P = \frac{0,449 + 0,03 + 0,152 + 0,0066 + 0,0323}{2.03} = 0,33$$
 МПа

Определяем расчетное сопротивление грунта основания под подошвой условного фундамента:

$$R = \frac{1.25 * 1.2}{1,1} [0,78 * 1 * 2,03 * 0,0175 + 4,11 * 0.526 * 0,0175 + 3,11 * 1.3 * 0,0175 + 6,67$$
$$* 0,005] = 0,7 \text{ M}\Pi\text{a}$$

Т.о. основное условие при расчете свайного фундамента по второй группе предельных состояний удовлетворяется: $P=0.33~\mathrm{M\Pi a} < 0.7~\mathrm{M\Pi a}$. Фундамент запроектирован правильно.

Расчет свайного фундамента под внутренние несущие стены.

При расчете свайного фундамента под внутренние несущие стены принимаем сваи марки C6,5-30. Параметры сваи: l=6,5 м, поперечное сечение 30х30 см, $l_{\rm oct}=25$ см.

Оставляем прежними марку бетона и тип арматуры.

Допустимая нагрузка на сваю по материалу будет аналогичной $F_{Rm} = 0,565$ MH.

Допустимая нагрузка на сваю по грунту:

$$F_{d} = \gamma_{c} \left(\gamma_{cR} * R * A + u \sum \gamma_{cf} * f_{i} * h_{i} \right) =$$

=
$$1[1*2,6*0,09+1,2*(0,0333*1,5+0,0388*2+0,04215*1,5+0,04363*1,45)]$$

= 0.539 M Π a.

Расчетное сопротивление сваи: $P_c = \frac{F_d}{\gamma_k} = \frac{0,539}{1,4} = 0,385 \text{ MH}$

Расстояние между сваями примем a = 3b = 3*0,3 = 0,9 м

Требуемое число свай в фундаменте:

$$n = \frac{\gamma_k * N}{F_d - \gamma_f * a^2 * d * \gamma_{ml}} = \frac{1.4 * 0.656}{0.539 - 1.15 * 0.9^2 * 1.9 * 20} = 1.8 \text{ шт.} \approx 2 \text{шт.}$$

Окончательное число свай принимаем 2 на 1м фундамента. Принимаем двурядное расположение свай.

Определяем толщину ростверка:

$$h_p = -\frac{b}{2} + \frac{1}{2}\sqrt{b^2 + P_c/R_{bt}} = -\frac{0.3}{2} + \frac{1}{2}*\sqrt{0.3^2 + 0.0.385/1.05} = 0.23 \text{м} => \text{по конструктив}$$
 ным требованиям принимаем $h_p = 0.3 \text{ м}.$

Вес ростверка на 1м фундамента: $N_p = 1.1 * 0.025 * 0.3 * 1.22 * 0.9 = 0.0088$ МН

Вес 3 стеновых фундаментных блоков марки ФБС 24.4.6-т:

$$N_f = 1.1 * 4 * 1300 * \frac{9.81}{2.38} = 0.0236 \text{ MH}$$

Нагрузка на одну висячую сваю: $N_{\Phi^{\mathrm{akt}}} = \frac{N_{\mathrm{d}}}{n_{\Phi^{\mathrm{akt}}}} \leq P_{c}$

$$\frac{0,656 + 0.0088 + 0,0236}{2} = 0,344 \text{ MH} < 0,385 \text{ MH}.$$

Определяем осредненный угол внутреннего трения грунтов, прорезываемых сваей:

$$\alpha = \frac{\varphi_{II}}{4} = \frac{25}{4} = 6,25^{\circ}$$

Найдем ширину условного фундамента:

$$B_v = 0.9 + 0.3 + 2 * 6.7 * tg6.25^\circ = 2.67 \text{m}.$$

Найдем вес свай, используя табличные данные:

$$N_c = 2 * (6.5 * 220 * 10 + 50 * 10) = 0.0296MH$$

Вес грунта в объеме АБВГ:

$$N_s = 0.215 \text{ MH}$$

Вес ростверка от действия нормативных нагрузок:

$$N_v = 0.025 * 0.3 * 1.22 * 0.9 = 0.008 \text{ MH}$$

Вес 4 стеновых фундаментных блоков:
$$N_{\phi,\delta_*} = 4 * 1300 * \frac{9,81}{2,38} = 0,0214$$
 МН

Давление под подошвой условного фундамента:

$$P = \frac{0,656 + 0,0296 + 0,215 + 0,008 + 0,0214}{2,67} = 0,348 \text{ M}$$
Па

Определяем расчетное сопротивление грунта основания под подошвой условного фундамента:

$$R = \frac{1.25 * 1.5}{1,1} [0,78 * 1 * 2,67 * 0,0175 + 4,11 * 0.526 * 0,0175 + 3,11 * 1.3 * 0,0175 + 6,67$$
$$* 0,005] = 0,908 \text{ MH}$$

Т.о. основное условие при расчете свайного фундамента по второй группе предельных состояний удовлетворяется: $P = 0.348 \text{ M}\Pi a < 0.908 \text{ M}\Pi a$. Фундамент запроектирован правильно.

Расчет осадок свайных фундаментов.

Среднее давление под подошвой условного фундамента $P = 0.330 \text{ M}\Pi a$.

Дополнительное давление на основание под подошвой условного фундамента:

$$P_0 = P_{II} - \sigma_{zg,0} = 0.330 - 0.033 = 0.297 \text{ M}\Pi a$$

Определяем ординаты эпюры дополнительных напряжений на границах элементарных слоев: $\sigma_{zp} = \alpha * P_0$

где α определяется по табл.1, прил.2 СНиП 2.02.01-83*. Значение коэффициента η для ленточных свайных фундаментов составляет >10. Чтобы избежать интерполяции задаемся соотношением $\xi = 0.4$.

Находим высоту элементарного слоя $h_i = \frac{0.4*2.03}{2} = 0.406$ м.

Проверяем выполнение условия $h_i < 0.4B_y$; 0.406 < 0.812 => условие выполнено.

Строим эпюру дополнительных напряжений в сжимаемой толще основания условного фундамента. Все данные заносим в таблицу 4. Вычисления продолжаются до выполнения условия $\sigma_{zp} \leq 0.2\sigma_{zg}$.

Получаем мощность сжимаемой толщи $h_c = 3,248$ м.

Таблица 4

z_i , M	$\xi = \frac{2z}{b}$	α	σ_{zp} , к Π а	Е, МПа
0	0	1,000	0,297	
0,406	0,4	0,960	0,285	
0,812	0,8	0,800	0,238	
1,218	1,2	0,606	0,180	43
1,624	1,6	0,449	0,133	73
2,030	2,0	0,336	0,099	
2,436	2,4	0,257	0,076	
2,842	2,8	0,201	0,06	

3,248	3,2	0,160	0,048	

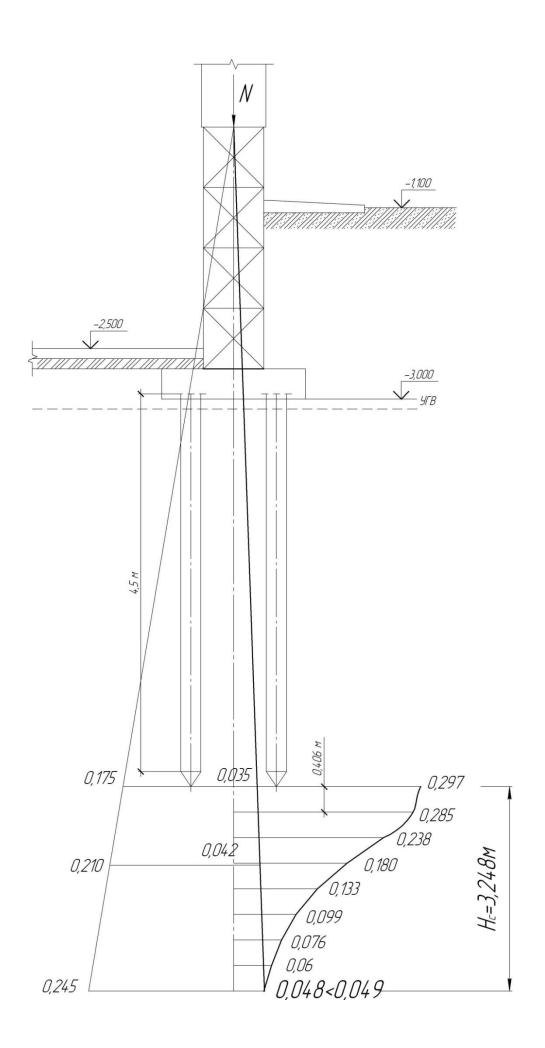
Определяем осадку фундамента по следующему уравнению:

$$s = \beta \sum_{i=1}^{n} \frac{\sigma_{zpi} h_i}{E_{oi}}$$

β – безразмерный коэффициент;

 E_{oi} — модуль общей деформации;

 h_i — высота i — го слоя грунта;


 σ_{zpi} — среднее напряжение в i — м слое.

$$s = \frac{0,8*0,406}{43} \Big[\frac{0,297+0,285}{2} + \frac{0,285+0,238}{2} + \frac{0,238+0,180}{2} + \frac{0,180+0,133}{2} \\ + \frac{0,133+0,099}{2} + \frac{0,099+0,076}{2} + \frac{0,076+0,06}{2} + \frac{0,06+0,048}{2} \Big] = 0,009 \text{m}$$

0,9 см < 10 см — условие выполнено.</p>

Предельная осадка для бескарка
сного здания с несущими стенами из кирпичной кладки без армирования по табл.
 $S_u = 10~{
m cm}.$

Расчетное значение осадки не превышает предельно допустимого уровня. Следовательно, свайный фундамент удовлетворяет требованиям расчета во второй группе предельных состояний.

Технико-экономическое сравнение ленточного и свайного фундамента.

Ленточный фундамент

1. Разработка грунта под фундамент:

Глубина заложения подушки фундамента d = 1,9 м

Ширина подушки фундамента b = 2,4 м

Объем грунта на 1 погонный метр V = b * l * h = 2,4 * 1 * 1,9 = 4,56 м³

2. Устройство песчаной подготовки под фундаменты:

Высота песчаной подсыпки $h_{\text{подс}} = 0.2 \text{ м} = > \text{объем}$ песчаной подсыпки на 1 погонный метр $V = b * l * h = (2.4 + 0.2) * 1 * 0.2 = 0.52 \text{ м}^3$

- 3. Установка ленточного сборного фундамента:
- Бетонные фундаментные блоки ФБС

$$V = 4 * b * l * h = 4 * 0.6 * 1 * 0.6 = 1.44 \text{ m}^3$$

• Фундаментная подушка железобетонная

$$V = b * l * h = 2,4 * 1 * 0,5 = 1,2 \text{ m}^3$$

- 4. Гидроизоляция:
- Горизонтальная, из двух слоев рубероида $V = 1.2 \text{ м}^3$
- Обмазочная битумная $S = 1,3 \text{ м}^2$

Свайный фундамент

5. Разработка грунта под фундамент:

Глубина подошвы ростверка аналогична ленточному фундаменту.

Ширина ростверка b = 1,17 м

Объем грунта на 1 погонный метр V = b*l*h = 1,17*1*1,9 = 2,22 м³

6. Устройство свайного фундамента с забивкой свай:

Марка сваи С4,5-25, расстояние между сваями 0,75 м

$$V = 0.25 * 0.25 * 4.5 * \frac{1}{0.75} = 0.375 \text{ m}^3$$

7. Устройство песчаной подготовки под монолитный ростверк:

Объем песчаной подсыпки на 1 погонный метр

$$V = b * l * h = (1,17 + 0,2) * 1 * 0,2 = 0,274 \text{ m}^3$$

8. Устройство монолитного ростверка:

$$V = b * l * h = 1,17 * 1 * 0,3 = 0,351 \text{m}^3$$

Объемы гидроизоляции аналогичны ленточным фундаментам. Результаты расчетов заносим в сводную таблицу. Расчет велся в текущих ценах по программе WinPИК.

No	Наименование работ	Ед. изм.	Ед. изм. Объем Стои	Стоимо	Стоимость, руб.		емкость,		
			раоот	Ед.	Общ.	Ед.	Общ.		
	Устройство ленточных фундаментов								
1	Разработка грунта (вкл. Обратную засыпку и уплот.)	м ³	4,56	35,45	161,65	3,88	17,69		
2	Песчаная подготовка	м ³	0,52	4,8	2,50	2,6	1,352		
3	Устройство ФБС	м ³	1,44	1278	1840,3	2,3	3,31		
4	Устройство ФЛ	M ³	1,2	2090	2508	5,7	6,84		
5	Горизонтальная гидроизоляция	м²	1,2	497	596,4	0,21	0,25		
6	Обмазочная гидроизоляция	м²	1,3	59,2	77	0,21	0,27		
-	Итого:				5185,85		19,712		
	Устройство свайных фундаментов								
1	Разработка грунта	M ³	2,22	35,45	78,7	3,88	8,61		
2	Песчаная подготовка	M ³	0,274	4,8	1,315	2,6	0,712		
3	Свайный фундамент с забивкой свай	м ³	0,375	6682	2505,8	6,08	2,28		
4	Монолитный ростверк	м ³	0,351	4544	1609	14,2	4,98		
5	Горизонтальная гидроизоляция	m ²	1,2	497	596,4	0,21	0,25		
6	Обмазочная гидроизоляция	м ²	1,3	59,2	77	0,21	0,27		
-	Итого:				3419		17,102		

Таблица 5

<u>Вывод</u>: по расчетам видно, что наиболее выгоден ленточный сборный фундамент, который более дешевый по сравнению со свайными фундаментами. Однако устройство ленточных фундаментов более трудоемко и требует больших расходов на разработку котлованов и в настоящее время используется все реже. Сваи в свою очередь являются универсальным средством устройства фундаментов для большинства зданий и сооружений. Кроме того, на практике устройство свайных фундаментов является не таким уж дорогим. Ошибочность расчетов можно отнести к большому количеству факторов, которые необходимо учитывать, однако это не всегда возможно в процессе

разработки проекта и усваивается по мере получения опыта. Таким образом, принимаем основным свайный фундамент с монолитным ростверком.

Заключение.

Выполнение курсового проекта на тему «Основания и фундаменты» позволило систематизировать знания, полученные в ходе изучения учебного материала, курса лекций, а также самостоятельной работы. Это явля€тся важной ступенью развития будущего инженера-строи†еля, который должен не только хорошо знать методы возведения зданий и сооружений, но и в совершенстве владеть расчетными методами современного конструирования оснований и фундаментов. Были получены навыки расчета наиболее широко применяемых в массовом строительстве индустриальных фундаментов – сборного ленточного и свайного с монолитным ростверком фундаментов.

Библиографический список

- 1. Берлинов, М. В. Расчет оснований и фундаментов [Текст] : учеб. для ср. спец. учеб. заведений / М. В. Берлинов, Б. А. Ягупов. М. : Стройиздат, 2000. 272 с.
- 2. Далматов, Б. И. Проектирование фундаментов зданий и подземных сооружений [Текст] : учеб. пособие / Под редакцией Б. И. Далматова. М. : Изд-во АСВ, 2001. 440 с.
- 3. Пилягин, А. В. Проектирование оснований и фундаментов зданий и сооружений [Текст] : учеб. пособие / Под редакцией А. В. Пилягина. М. : Изд-во АСВ, 2006. 248 с.
- 4. ГОСТ 25100-95. Грунты. Классификация. М.: Минстрой России, 1995. 24 с.
- 5. СНи Π 2.01.07-85 * . Нагрузки и воздействия. М. : Госстрой России, 2004. 47 с.
- СНиП 2.02.01-83. Основания зданий и сооружений. М.: Госстрой России, 2004. – 40 с.
- 7. СНиП 2.02.03-85. Свайные фундаменты. М.: Минстрой России, 1995. 76 с.
- 8. СНиП 3.02.01-87. Земляные сооружения, основания и фундаменты. М. : Госстрой России, 2003.-75 с.