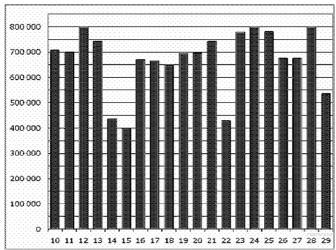
Демонстрационный вариант вступительного экзамена по общеобразовательному предмету «Математика»

<u>1.</u> После повышения цены на 20% чайник стал стоить 1800 рублей. Сколько рублей стоил чайник до повышения цены? <u>Ответ:</u> 1500 .

<u>2.</u> На рисунке приведена диаграмма ежедневного потока пассажиров некоторой станции метро в



период с 10 по 29 июня. Определите разницу между наибольшим и наименьшим количеством пассажиров в указанный период. **Ответ:** 400000 .

<u>3.</u> Найдите площадь треугольника, изображенного а рисунке. <u>Ответ: 7,5</u>.

<u>4.</u> В кармане было 3 монеты «10 рублей», 1 монета «5 рублей» и 4 монеты «2 рубля». Одна монета была потеряна. Какова вероятность того, что потеряли монету «10 рублей»? <u>Ответ: 0,375</u>.

<u>5.</u> Решите уравнение $4 \cdot 3^x - 3^{x+1} = 81$. Ответ: 4.

<u>6.</u> Площадь равностороннего треугольника равна $\sqrt{3}$. Найдите длину стороны треугольника. **Ответ:** 2 .

<u>7.</u> Прямая y = 3x - 1 параллельна касательной к графику функции $y = x^2 + 7x - 2$. Найдите абсциссу точки касания. <u>Ответ: -2</u>.

8. В сосуде, имеющем форму конуса, уровень жидкости достигает половины высоты. Объём жидкости равен 70 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд? **Ответ:** 490 .

9. Найдите $\cos \alpha$, если $\sin \alpha = 0.6$ и если $\frac{\pi}{2} < \alpha < \pi$. Ответ: -0.8.

10. К источнику с ЭДС $\varepsilon = 55$ В и внутренним сопротивлением r = 0.5 Ом, хотят подключить нагрузку с сопротивлением R Ом. Напряжение на этой нагрузке, выражаемое в вольтах, дается формулой $U = \frac{\varepsilon R}{R+r}$. При каком наименьшем значении сопротивления нагрузки напряжение на ней будет не менее 50 В? Ответ выразите в Омах. Ответ: 5.

11. Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо лесополосы, длина которой равна 400 метрам, за 1 минуту. Найдите длину поезда в метрах. Ответ: 600.

12. Найдите наименьшее значение функции y = 5cosx - 6x + 4 на отрезке $\left[-\frac{3\pi}{2}, 0\right]$. **Ответ:** 9.

13. а) Решите уравнение $1 - 2sin^2x - cosx = 0$. б) Найдите все корни данного уравнения, принадлежащие промежутку $\left[-\pi_i \right]_{i=0}^{\infty}$.

Решение: $1-2(1-\cos^2x)-\cos x=0$ $2\cos^2x-\cos x-1=0$ $D=(-1)^2-4\cdot 2\cdot (-1)=9$ $(\cos x)_{1,2}=\frac{1\pm\sqrt{D}}{2\cdot 2}=-\frac{1}{2};1$ $1)\cos x=-\frac{1}{2}$; $x=\pm arccos\left(-\frac{1}{2}\right)+2\pi n=\pm\frac{2\pi}{3}+2\pi n, n\in\mathbb{Z}$ $x=\cdots,-\frac{4\pi}{3},-\frac{2\pi}{3},\frac{2\pi}{3},\frac{4\pi}{3},\ldots$ Отрезку $\left[-\pi;\frac{\pi}{2}\right]$ принадлежит $x=-\frac{2\pi}{3}$. $2)\cos x=1$; $x=2\pi n, n\in\mathbb{Z}$. $x=\cdots,-2\pi,0,2\pi,\ldots$ Отрезку $\left[-\pi;\frac{\pi}{2}\right]$ принадлежит x=0. $x=\cdots,-2\pi,0,2\pi,\ldots$ Отрезку $\left[-\pi;\frac{\pi}{2}\right]$ принадлежит x=0.

14. Решите неравенство: $log_{0.5}^2(-log_3x) - log_{0.5}log_3^2x \le 3$.

Решение. Так как $log_a(b^k) = k \cdot log_a|b|$ и так как по условию задачи $(-log_3x) > 0$, получаем $log_{0,5}^2(-log_3x) - 2 \cdot log_{0,5}(-log_3x) \le 3$. Обозначим $z = log_{0,5}(-log_3x)$. Неравенство превращается в такое: $z^2 - 2z - 3 \le 0$. Находим $z_{1,2} = -1$; 3. Ветви параболы смотрят вверх, поэтому решением будет $z \in [-1;3]$. Возвратимся к переменной x, получим $-1 \le log_{0,5}(-log_3x) \le 3$, откуда $log_{0,5}(0,5)^{-1} \le log_{0,5}(-log_3x) \le log_{0,5}(0,5)^3$, следовательно, из-за 0 < 0,5 < 1 будет $(0,5)^{-1} \ge -log_3x \ge (0,5)^3$. Умножая все части неравенства на (-1), получим $-2 \le log_3x \le -\frac{1}{8}$ или $log_33^{-2} \le log_3x \le log_33^{-\frac{1}{8}}$. Получилось $3^{-2} \le x \le 3^{-\frac{1}{8}}$, откуда $\frac{1}{4} \le x \le \frac{1}{8\sqrt{3}}$. $\frac{1}{4\sqrt{3}}$.